

Available online at www.sciencedirect.com

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 691 (2006) 2839-2845

www.elsevier.com/locate/jorganchem

On the reactivity of $[IrCl(N_2)(PPh_3)_2]$ with alkynylsilanes – A new route to vinylidene iridium(I) complexes

Marcin Konkol, Dirk Steinborn *

Institut für Anorganische, Chemie der Martin-Luther-Universität Halle-Wittenberg, Fachbereich Chemie, Kurt-Mothes-Strasse, 2, D-06120 Halle (Saale), Germany

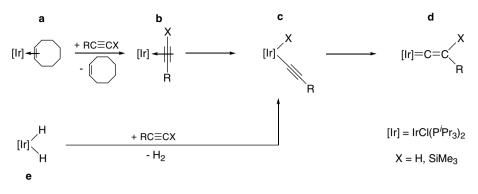
Received 16 September 2005; received in revised form 16 February 2006; accepted 20 February 2006 Available online 28 February 2006

Abstract

The iridium dinitrogen complex $[IrCl(N_2)(PPh_3)_2]$ (1) was found to react with alkynylsilanes $RC\equiv CSiR'_3$ to form the vinylidene iridium(I) complexes *trans*- $[IrCl\{=C=CR(SiR'_3)\}(PPh_3)_2]$ (R/R' = Ph/Me, 2; Me/Me, 3; Bn/Me, 4; SiMe_3/Me, 5; SiEt_3/Et, 6; ⁱPr/Me, 7) and with Me_3SiC $\equiv CC(O)R$ to yield the iridium η^2 -alkyne complexes *trans*- $[IrCl\{\eta^2-Me_3SiC\equiv CC(O)R\}(PPh_3)_2]$ (R = OEt, 9; Me, 11). Complex 9 was found to isomerize upon heating or upon UV irradiation yielding the vinylidene complex *trans*- $[IrCl\{=C=C(SiMe_3)-CO_2Et\}(PPh_3)_2]$ (10). The reaction of 1 with Me_3SiC $\equiv C-C\equiv CSiMe_3$ yielded the complex *trans*- $[IrCl\{=C=C(SiMe_3)-CO_2Et\}(PPh_3)_2]$ (8), whereas with MeO_2CC $\equiv CCO_2Me$ the iridacyclopentadiene complex $[Ir\{C_4(CO_2Me)_4\}Cl(PPh_3)_2]$ (13) was formed. The complexes were characterized by means of ¹H, ¹³C and ³¹P NMR spectroscopy as well as by IR spectroscopy and microanalysis. © 2006 Elsevier B.V. All rights reserved.

Keywords: Iridium; Alkynylsilane; Vinylidene complexes; n²-Alkyne complexes; Iridacyclopentadiene

1. Introduction


It is well-known that vinylidenes - the thermodynamically less stable isomers of alkynes - can be effectively stabilized via coordination to a transition metal center [1] and that vinylidene transition metal complexes play an important role as intermediates in some homogeneously catalyzed reactions [2]. Square-planar vinylidene iridium(I) complexes *trans*-[IrCl(=C=CHR)($P^{i}Pr_{3}$)₂] have been firstly prepared by Werner et al. [3] as shown in Scheme 1 (X = H). The substitution reactions of terminal alkynes RC=CH with the cyclooctene complex a (generated in situ from [{IrCl(C_8H_{14})₂}]₂ and PⁱPr₃[4]) gave the alkyne complexes **b**, which were found to isomerize via hydrido(alkynyl)iridium(III) complexes c yielding the vinylidene complexes d [3,5]. Alternatively, the dihydridoiridium(III) complex e underwent, with the reductive elimination of H₂, the oxidative addition of terminal alkynes

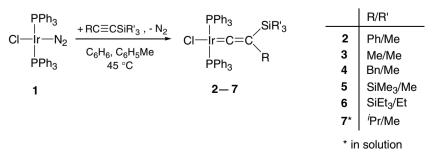
to provide the intermediate complexes c, which isomerized to the vinylidene complexes d [6]. Furthermore, alkynylsilanes RC=CSiMe₃ were found to react analogously with \equiv C-Si bond activation (Scheme 1, X = SiMe₃), likely also via type \mathbf{c} intermediate complexes [7,8]. However, all these reactions proceeded with triisopropylphosphine as coligands [3,5–8]. Other phosphines could be used only in special cases. Thus, $[IrCl(=C=CH_2)(PMe^tBu_2)_2]$ was obtained from the reaction of $[IrCl(H)_2(PMe^tBu_2)_2]$ with acetylene, but reactions using PMePh₂, PMe₂^tBu, PMe₂Ph or PPh₃ failed [9]. The only complex having PPh₃ coligands [IrCl(=C=CH₂)(PPh₃)₂] was isolated in the elimination reaction of CO from [Ir(C=CH)Cl(H)(CO)(PPh₃)₂] with Me₃NO [9]. Furthermore, some vinylidene type **d** complexes with bifunctional phosphines P(CH2CH2O-Me)(^{*i*}Pr)₂ or P(CH₂CO₂Me)(^{*i*}Pr)₂ have also been obtained [10].

As early as 1967 Collman et al. reported the reactions of $[IrCl(N_2)(PPh_3)_2]$ (1) with internal alkynes having two electron-withdrawing substituents $RC \equiv CR'$ (R, $R' = CO_2Me$, Ph,...) to form iridium η^2 -alkyne [11] or

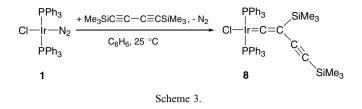
^{*} Corresponding author. Tel.: +49 345 55 25620; fax: +49 345 55 27028. *E-mail address:* dirk.steinborn@chemie.uni-halle.de (D. Steinborn).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2006.02.025

Scheme 1.


iridacyclopentadiene [12] complexes. Thus, it was shown that the dinitrogen ligand in 1 could be – in principle – substituted by alkynes. However, from the analogous reactions with acetylene and phenylacetylene it was not possible to isolate either the requisite alkyne or vinylidene complexes [9]. Within this paper we describe our investigations on the reactivity of the iridium dinitrogen complex 1 toward trialkylsilyl-substituted alkynes yielding η^2 -alkyne complexes and/or, with =C-Si bond activation, square-planar iridium(I) vinylidene complexes having triphenyl-phosphine co-ligands.

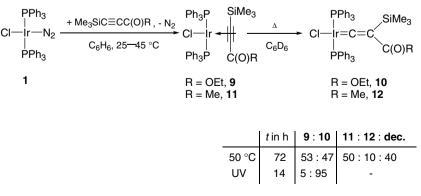
2. Results and discussion

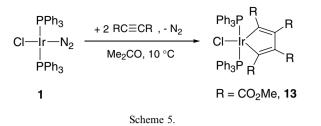

The dinitrogen iridium complex $[IrCl(N_2)(PPh_3)_2]$ (1) was found to react with $RC \equiv CSiR'_{3}$ in benzene or toluene at 45 °C yielding the iridium(I) vinylidene complexes trans- $[IrCl{=C=CR(SiR'_3)}(PPh_3)_2]$ (2–7) (Scheme 2). Monitoring the reactions NMR spectroscopically (¹³C, ³¹P) revealed that the complexes 2–7 were almost quantitatively formed within 1–6 h. Complexes 2–6 were isolated in yields of 53–78%; complex 7 has been characterized in C_6D_6 solution. The vinylidene complexes 2-6 are red-pink or orange, with the exception of 4, moderately air-sensitive solids, which are well soluble in benzene and methylene chloride and sparingly soluble in methanol, hexane and diethyl ether. They undergo decomposition within 15 min up to 1 h on air but can be stored under argon at -40 °C at least for a few weeks without decomposition. Complex 4 (R = Bn) is air-sensitive in the solid state and it turns brownish within a few minutes.

The identities of the vinylidene complexes were confirmed by microanalyses, IR spectroscopy as well as ¹H, ¹³C and ³¹P NMR spectroscopy. The ¹³C NMR resonances for vinylidene α -carbon atoms are strongly low-field shifted (244-264 ppm) exhibiting ²J(P,C) coupling constants of 11–13 Hz, whereas the resonances for vinylidene β -carbon atoms were found at 82–103 ppm having ${}^{3}J(P,C)$ coupling constants of 2-4 Hz. The triplet patterns of these two signals give clear evidence for the trans configuration of the complexes. In accordance with that in the ³¹P NMR spectra singlet resonances at 25-28 ppm were found. The NMR data are consistent with those reported by Werner et al. for analogous complexes with PⁱPr₃ ligands (¹³C NMR: 240-255 ppm (C_{α}); 80–100 ppm (C_{β}); ³¹P NMR: 29–34 ppm) [7]. The IR spectra of complexes 2-6 revealed bands in the range 1587–1659 cm^{-1} that were assigned to the C=C stretching vibration. For comparison, in the IR spectra of alkenes C=C stretching vibrations usually appear in the range $1635-1690 \text{ cm}^{-1}$ [13].

Complex 1 was found to react with excess of Me₃SiC=C-C=CSiMe₃ yielding the vinylidene complex *trans*-[IrCl{=C=C(SiMe₃)C=CSiMe₃}(PPh₃)₂] (8) (Scheme 3). This complex was isolated in 68% yield as a violet-brown powder that is stable on air in the solid state for about 1 h. The analogous reaction of 1 with only 0.5 equiv. of Me₃SiC=C-C=CSiMe₃ did not lead to the formation of a binuclear complex having a bridging bis(vinylidene) ligand μ -(=C=C(SiMe₃)-C(SiMe₃)=C=). The ¹³C NMR spectrum of 8 gave clear evidence for its identity. The low-field shifted resonance for the vinylidene α -carbon atom was found as triplet at 261.5 ppm (²J(P,C) =

Scheme 2.

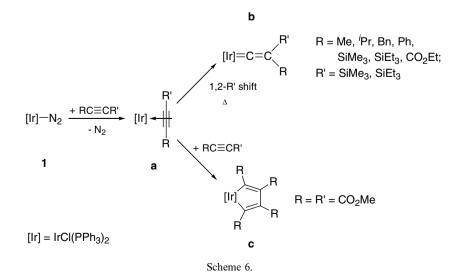



12.0 Hz). The assignment of two high-field shifted resonances at 78.4 and 83.8 ppm, with almost the same J(P,C) coupling constants of 3.0/3.1 Hz, to the vinylidene β -carbon and the alkyne γ -carbon atoms is equivocal. However, in the analogous complex with PⁱPr₃ ligands reported by Werner et al. the corresponding high-field shifted signal at 77.2 ppm was assigned to the vinylidene β -carbon atom, whereas that at 83.1 ppm to the γ -carbon atom [7]. The singlet resonance at 95.0 ppm is unequivocally assigned to the $C \equiv CSiMe_3$ carbon atom of the uncoordinated triple bond. In the case of free divne the resonances of the C=C triple bond appear at 86.2 and 89.5 ppm. Moreover, the two SiMe₃ groups were found to be chemically nonequivalent in the ¹³C and ¹H NMR spectra. The trans disposition of the phosphine ligands in complex 8 is inferred from the observation of a singlet resonance in the ³¹P NMR spectrum at 26.6 ppm. The IR spectrum of 8 reveals two characteristic bands at 1611 and 2105 cm^{-1} that can be assigned to the C=C and C=C stretching vibrations, respectively. A band due to C=C stretching vibration of uncoordinated ligand appears at 2066 cm^{-1} .

In contrast to the reactions of the dinitrogen complex 1 with alkynylsilanes bearing electron-donating or weakly electron-withdrawing substituents, the reactions of 1 with Me₃SiC=CC(O)R led to the formation of the iridium η^2 -alkyne complexes *trans*-[IrCl{ η^2 -Me₃SiC=CC(O)R}-(PPh₃)₂] (R = OEt, 9; R = Me, 11) (Scheme 4). Complexes 9 and 11 were isolated as orange and brownish moderately air-sensitive powders in 60% and 78% yield, respectively. Complex 9 was found to undergo on heating in benzene at 50 °C (3 days) or upon UV irradiation (14 h) an isomerization yielding the vinylidene isomer *trans*-[IrCl{=C=C (SiMe₃)CO₂Et}(PPh₃)₂] (**10**) with a degree of conversion of about 50% and 95%, respectively. On the other hand, in C₆D₆ solution of complex **11** the resonances of the uncoordinated ligand (10–30%) were also found, although the solid substance gave correct analytical data (C, H) and its IR spectrum showed only one stretching vibration (1801 cm⁻¹) assigned to the coordinated ligand. Thus, in solution the alkyne ligand seems to be partially cleaved off. Furthermore, the C₆D₆ solutions of **11** turned out to be much less stable. Even at room temperature within one day a partial decomposition took place and isomerization, yielding the requisite vinylidene complex *trans*-[IrCl{=C=C(SiMe₃)C(O)Me}(PPh₃)₂] (**12**), occurred only to an extent of about 10% (Scheme 4).

The identities of complexes 9 and 11 were confirmed by microanalyses as well as by IR and NMR spectroscopic measurements. The resonances of alkyne carbon atoms (9: 94.9/97.7 ppm; 11: 103.1/105.8 ppm) show coordination-induced shifts (CIS) of 2.1/1.5 ppm (9) and 7.7/2.4 ppm (11). The triplet pattern of the signals due to the ²J(P,C) coupling (1.4–2.1 Hz) and the singlet δ (³¹P) resonances at 19.8 (9) and 22.4 ppm (11) give evidence for the *trans* configuration. The IR spectra of η^2 -alkyne complexes display a band due to the C=C stretching vibration at 1828 (9) and 1801 cm⁻¹ (11). Thus, it is lowered in comparison with uncoordinated alkynes by ca. 350 cm^{-1} . The ¹³C NMR spectra of the vinylidene complexes 10 and 12 show the characteristic triplet resonances for the vinylidene α and β -carbon atoms (10/12: 263.7/267.9 ppm; 97.2/ 108.1 ppm) and are analogous to those of the vinylidene complexes 2-7. Analogously, the above-described triplet pattern and the singlet phosphorus resonances (27.1/ 26.0 ppm) account for the trans configuration of both complexes.

The reaction of $[IrCl(N_2)(PPh_3)_2]$ (1) with MeO₂CC=C-CO₂Me at 10 °C in acetone resulted in the formation of the iridacyclopentadiene complex $[Ir{C_4(CO_2Me)_4}Cl(PPh_3)_2]$ (13) (Scheme 5), which has been already reported by Collman et al. in an analogous reaction at 45 °C in thiophene-free benzene [12]. Complex 13 was isolated in 42% yield as air-stable red crystals, which are well soluble in chlorinated solvents and acetone. The spectroscopic data are consistent


with those reported in the literature [12]; the crystal structure has been reported elsewhere [14].

The results presented in this paper are summarized in Scheme 6. Thus, the iridium dinitrogen complex $[IrCl(N_2) (PPh_3)_2$](1) was found to be a versatile starting material for the preparation of square-planar Me₃Si- or Et₃Si-substituted vinylidene iridium(I) complexes having PPh₃ co-ligands (Scheme 6, b). Most likely, the first step is the substitution of the dinitrogen ligand by an alkyne yielding η^2 -alkyne complexes (a) as it was proved in the reactions with alkynylsilanes having a strongly electron-withdrawing substituent (Me₃SiC \equiv CC(O)R, R = OEt, Me). Furthermore, as it was shown by Collman the use of internal alkynes $RO_2CC \equiv CCO_2R$ (R = Me, Et) having two strongly electron-withdrawing substituents led to the formation of type a complexes, which were found to react further yielding iridacyclopentadiene complexes c [12]. Using alkynylsilanes $RC \equiv CR'$ ($R' = SiMe_3$, $SiEt_3$) having electron-donating (R = Me, ^{*i*}Pr, SiMe₃, SiEt₃) or weakly electron-withdrawing (R = Bn, Ph) substituents, the formation of the intermediate type a complexes could not be proved experimentally. However, the formation of complexes $[IrCl(\eta^2 - RC \equiv CSiMe_3)(P^iPr_3)_2]$ has been proved NMR spectroscopically in the reactions of $[{IrCl(C_8H_{14})_2}]_2$ with $P^i Pr_3/RC \equiv CSiMe_3$ [7]. The silve shift reactions $(\mathbf{a} \rightarrow \mathbf{b})$ may proceed via silyl(alkynyl)iridium(III) intermediate complexes; with terminal alkynes (PⁱPr₃ co-ligands) the analogous hydrido(alkynyl)iridium(III) complexes (Scheme 1, c, X = H) could be isolated [3,5] and, furthermore, the reaction of $[IrCl(C_8H_{14})(P'Pr_3)_2]$ and HSiMe₃ resulted in the formation of hydrido(silyl) complex $[IrHCl(SiMe_3)(P'Pr_3)_2]$ [7]. Overall, the route shown in Scheme 6 is similar to that reported by Werner et al. (Scheme 1) but seems to be restricted to \equiv C—Si bond activation using alkynylsilanes, whereas Werner's route also allows \equiv C—H bond activation in terminal alkynes. Nevertheless, to date the formation of vinylidene complexes according to Scheme 6 is the only way to obtain a broader variety of Werner's type vinylidene iridium complexes, other than with triisopropylphosphine ligands. Although the properties of vinylidene iridium complexes with PPh₃ ligands are similar to those reported for analogous complexes with PⁱPr₃ ligands, the former complexes seem to be less stable.

3. Experimental

3.1. General comments

All reactions were carried out under argon using standard Schlenk techniques. Diethyl ether, benzene and toluene were distilled from sodium benzophenone ketyl. *n*-Hexane and *n*-pentane were dried over LiAlH₄. Methanol was dried over Mg and distilled from NaBH₄/ $Na_2[Fe(pc)] \cdot 5.5THF (H_2pc = phthalocyanine). [IrCl(N_2) (PPh_3)_2$ (1) [15] and BnC \equiv CSiMe₃ [16] were prepared in accordance with the procedures in the literature. All other compounds were commercially available and used as received. ¹H, ¹³C and ³¹P NMR spectra were recorded on Varian Gemini 200, VXR 400 and Unity 500 spectrometers. Chemical shifts are relative to C_6H_6 (δ 7.15), CHDCl₂ (δ 5.32) and C₆D₆ (δ 128.0), CD₂Cl₂ (δ 53.8) as internal references. δ (³¹P) is relative to external H₃PO₄ (85%). Microanalyses (C, H, N) were performed by the University of Halle microanalytical laboratory using CHNS-932 (LECO) and Vario EL (elementar Analysensysteme) elemental analyzers. IR spectra were recorded on a Mattson Galaxy 5000

FT-IR spectrometer using CsBr or KBr pellets. To run experiments in NMR tubes, they were charged under argon with educts and solvents by means of syringes and then closed by melting. Reactions were performed in a shaking machine with automatic temperature regulation. In appropriate time intervals NMR spectra were recorded to monitor the reactions.

3.2. Syntheses

3.2.1. trans-[$IrCl \{=C=CR(SiR'_3)\}(PPh_3)_2$] (R/R' = Ph/Me, 2; R/R' = Me/Me, 3; $R/R' = SiMe_3/Me$, 5; $R/R' = SiEt_3/Et$, 6)

To a yellow suspension of $[IrCl(N_2)(PPh_3)_2]$ (1) (65 mg, 0.083 mmol) in benzene (2, 3) or toluene (5, 6) (2 ml), the corresponding alkynylsilane RC=CSiR'_3 (2:1-2.5:1) was added at room temperature with stirring. The reaction mixture was warmed up to about 45 °C and then stirred for a few hours until a clear solution formed and a change of colour from yellow to red-violet (2, 3) or red-orange (5, 6) occurred (4-6 h). The solvent volume was reduced by evaporation in vacuo to ca. 1 ml and freshly distilled methanol (3:1) was added. Solvents were then evaporated in vacuo up to 1-2 ml. The red-pink (2, 3)/orange (5, 6) precipitate formed was subsequently filtered off, washed with methanol (5 ml) at -10 °C and dried in vacuo for 1 h.

(2) Yield: 60 mg (78%). Anal. Calc. for $IrClP_2SiC_{47}H_{44}$ (926.57): C, 60.93; H, 4.79. Found: C, 59.72; H, 5.22%. v(C=C) 1587(s) cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ -0.04 (s, 9H, Si(CH₃)₃), 6.76/6.89 ('t'/t',¹ 1H/2H, *p*-H/ *m*-H of Ph), 6.97-7.00/7.91-7.96 (m/m, 18H/13H, *p*-H, *m*-H of PPh₃/*o*-H of PPh₃, *o*-H of Ph). ¹³C NMR (100 MHz, C₆D₆): δ 0.8 (s, Si(CH₃)₃), 101.6 (m, Ir=C=C), 121.9 (s, *i*-C of Ph), 124.2 (s, *p*-C of Ph), 127.5 (s, *o*-C or *m*-C of Ph, the other one is overlapped with C₆D₆/PPh₃), 128.1 ('t', *m*-C of PPh₃), 130.2 (s, *p*-C of PPh₃), 132.7 ('t', *i*-C of PPh₃), 135.8 ('t', *o*-C of PPh₃), 263.5 (t, ²J(P,C) = 12.9 Hz, Ir=C). ³¹P NMR (81 MHz, C₆D₆): δ 25.1 (s).

(3) Yield: 40 mg (56%). Anal. Calc. for IrClP₂SiC₄₂H₄₂ (864.50): C, 58.35; H, 4.90. Found: C, 57.98; H, 5.32%. v(C=C) 1652(w) cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ -0.29 (s, 9H, Si(CH₃)₃), 1.55 (t, 3H, ⁵J(P,H) = 2.1 Hz, CH₃), 7.01–7.10/7.93–7.98 (m/m, 18H/12H, *p*-H, *m*-H/*o*-H of PPh₃). ¹³C NMR (125.7 MHz, C₆D₆): δ -6.1 (s, CH₃), -1.3 (s, Si(CH₃)₃), 88.4 (t, ³J(P,C) = 3.6 Hz, Ir=C=C), 127.9 ('t', *m*-C of PPh₃), 129.9 (s, *p*-C of PPh₃), 133.4 ('t', *i*-C of PPh₃), 135.9 ('t', *o*-C of PPh₃), 257.9 (t, ²J(P,C) = 13.1 Hz, Ir=C). ³¹P NMR (81 MHz, C₆D₆): δ 25.8 (s).

(5) Yield: 48 mg (62%). Anal. Calc. for $IrClP_2Si_2C_{44}H_{48}$ (922.64): C, 57.28; H, 5.24. Found: C, 57.38; H, 5.39%. ν (C=C) 1639 (s, br) cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ -0.06 (s, 18H, Si(CH₃)₃), 7.02-7.15/7.96-8.00 (m/m, 18H/12H, *m*-H, *p*-H/*o*-H of PPh₃). ¹³C NMR (125.7 MHz, C₆D₆): δ 1.8 (s, Si(CH₃)₃), 84.2 (t, ³J(P,C) = 2.0 Hz, Ir=C=C), 128.0 ('t', *m*-C of PPh₃), 129.9 (s, *p*-C of PPh₃), 134.0 ('t', *i*-C of PPh₃), 136.0 ('t', *o*-C of PPh₃), 246.7 (t, ²J(P,C) = 10.9 Hz, Ir=C). ³¹P NMR (C₆D₆, 81 MHz): δ 28.0 (s).

(6) Yield: 49 mg (58%). Anal. Calc. for $IrClP_2Si_2C_{50}H_{60}$ (1006.80): C, 59.65; H, 6.01. Found: C, 59.96; H, 6.16%. v(C=C) 1615(s) cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 0.47 (q, 12H, ³*J*(H,H) = 8.0 Hz, Si(*CH*₂CH₃)₃), 1.05 (t, 18H, ³*J*(H,H) = 8.0 Hz, Si(*CH*₂CH₃)₃), 7.06/7.13/7.95–8.00 ('t'/ 't'/m, 6H/12H/12H, *p*-*H/m*-*H/o*-*H* of PPh₃). ¹³C NMR (125.7 MHz, C₆D₆): δ 7.1 (s, Si(*CH*₂CH₃)₃), 9.3 (s, Si(*CH*₂*CH*₃)₃), 82.7 (s, br, Ir=C=*C*), 128.0 ('t', *m*-*C* of PPh₃), 129.8 (s, *p*-*C* of PPh₃), 134.1 ('t', *i*-*C* of PPh₃), 136.1 ('t', *o*-*C* of PPh₃), 244.2 (t, ²*J*(P,C) = 11.0 Hz, Ir=*C*). ³¹P NMR (C₆D₆, 81 MHz): δ 27.1 (s).

3.2.2. trans-[$IrCl = C = CBn(SiMe_3)$] (PPh₃)₂] (4)

To a yellow suspension of $[IrCl(N_2)(PPh_3)_2]$ (1) (70 mg, 0.090 mmol) in benzene (3 ml) 1-(trimethylsilyl)-3-phenylprop-1-yne (26 mg, 0.14 mmol) was added with stirring. The reaction mixture was warmed up to about 40 °C and then stirred for a few hours until a clear solution formed and a change of colour to deep red occurred (1-3 h). The solvent was then removed by evaporation in vacuo to dryness and freshly distilled hexane (5 ml) was added. A redpink precipitate was filtered off, washed with hexane (10 ml) at -10 °C and dried in vacuo for 1 h. Yield: 45 mg (53%). v(C=C) 1659 (m, br) cm⁻¹. ¹H NMR $(500 \text{ MHz CD}_2\text{Cl}_2)$: $\delta -0.58$ (s, 9H, Si(CH₃)₃), 3.22 (s, 2H, CH₂), 6.70/6.90/6.96 ('d'/'t'/'t', 2H/2H/1H, o-H/m-H/p-H of Ph), 7.36-7.42/7.67-7.71 (m/m, 18H/12H, m-H, p-H/o-H of PPh₃). ¹³C NMR (CD₂Cl₂, 125.7 MHz): δ -0.8 (s, Si(CH₃)₃), 16.8 (s, CH₂), 95.5 (t, ³J(P,C) = 3.6 Hz, Ir=C=C), 125.8 (s, p-C of Ph), 127.7/129.2 (s/s, m-C and o-C of Ph), 128.2 ('t', m-C of PPh₃), 130.3 (s, p-C of PPh₃), 133.3 ('t', *i*-C of PPh₃), 135.8 ('t', *o*-C of PPh₃), 142.6 (s, *i*-*C* of Ph), 256.1 (t, ${}^{2}J(P,C) = 12.6$ Hz, Ir=*C*). ${}^{31}P$ NMR (CD₂Cl₂, 81 MHz): δ 25.2 (s).

3.2.3. Formation of trans-[$IrCl = C = C^{i}Pr(SiMe_{3})$ }-(PPh_{3})₂] (7)

In an NMR tube $[IrCl(N_2)(PPh_3)_2]$ (1) (30 mg, 0.038 mmol) and 3-methyl-1-(trimethylsilyl)but-1-yne (13 mg, 0.09 mmol) were reacted in C_6D_6 (1 ml) at room temperature for a few hours until a yellow suspension turned to a deep red solution. ¹H NMR (400 MHz, C_6D_6): δ -0.04 (s, 9H, Si(CH₃)₃), 0.62 (d, 6H, ${}^{3}J(H,H) = 6.7$ Hz, CH₃), 2.47 (m, 1H, CH), 7.02–7.12/ 7.95-8.00 (m/m, 18H/12H, m-H, p-H/o-H of PPh₃). ¹³C NMR (125.7 MHz, C_6D_6): δ 0.8 (s, Si(CH₃)₃), 14.6 (s, CH), 25.0 (s, CH₃), 102.4 (t, ${}^{3}J(P,C) = 3.1$ Hz, Ir=C=C), 128.1 ('t', m-C of PPh₃), 129.9 (s, p-C of PPh₃), 133.6 ('t', *i-C* of PPh₃), 136.0 ('t', *o-C* of PPh₃), 258.0 (t, $^{2}J(P,C) = 12.4 \text{ Hz}, \text{ Ir}=C$). $^{31}P \text{ NMR}$ (81 MHz, C₆D₆): δ 25.0 (s).

¹ Here and in the following 't' denotes pseudotriplet, 'd' pseudodoublet.

3.2.4. trans-[IrCl{=C= $C(SiMe_3)C$ = $CSiMe_3$ }(PPh₃)₂] (8)

 $[IrCl(N_2)(PPh_3)_2]$ (1) (40 mg, 0.051 mmol) and 1.4bis(trimethylsilyl)buta-1,3-diyne (19 mg, 0.10 mmol) were suspended in benzene (1 ml). After 1 day of stirring a deep red solution formed. The solvent was removed in vacuo up to dryness. The violet-brown crude product was washed with pentane at -10 °C and dried in vacuo for 1 h. Yield: 33 mg (68%). $v(C \equiv C)$ 2105 (m), v(C = C) 1611 (w) cm⁻¹. ¹H NMR (400 MHz, C_6D_6): $\delta -0.26/0.23$ (s/s, 9H/9H, Si(CH₃)₃), 7.02–7.15/7.91–7.96 (m/m, 18H/12H, m-H, p-*H*/*o*-*H* of PPh₃). ¹³C NMR (125.7 MHz, C₆D₆): δ -1.4/ 1.1 (s/s, Si(CH₃)₃), 78.4/83.8 (t/t, J(P,C) = 3.0/3.1 Hz, Ir=C=C and =C(SiMe_3)C=C), 95.0 (s, =CSiMe_3), 128.3 ('t', m-C of PPh₃), 130.1 (s, p-C of PPh₃), 132.2 ('t', *i-C* of PPh₃), 135.8 ('t', *o-C* of PPh₃), 261.5 (t, $^{2}J(P,C) = 12.0 \text{ Hz}, \text{ Ir}=C$). $^{31}P \text{ NMR}$ (81 MHz, C₆D₆): δ 26.6 (s). For comparison Me₃SiC=C-C=CSiMe₃: $v(C \equiv C)$ 2066 cm⁻¹. ¹³C NMR (125.7 MHz, C₆D₆): δ -0.65 (s, Si(CH₃)₃), 86.2/89.5 (s/s, C $\equiv C$).

3.2.5. trans-[$IrCl\{\eta^2-Me_3SiC\equiv CCO_2Et\}(PPh_3)_2$] (9)

To a suspension of $[IrCl(N_2)(PPh_3)_2]$ (1) (70 mg, 0.090 mmol) in benzene (2 ml) ethyl 3-(trimethylsilyl)propynoate (31 mg, 0.18 mmol) was added at room temperature with stirring. The reaction mixture was warmed up to about 45 °C and stirred for a few hours. After 15 min an orange-brown clear solution formed. After 1-2 h a change of colour to red-brownish occurred. The work-up procedure is analogous to that described in Section 3.2.1. Orange powder. Yield: 50 mg (60%). Anal. Calc. for IrClP₂SiO₂C₄₄H₄₄ (922.52): C, 57.29; H, 4.81. Found: C, 56.89; H, 4.73%. $v(C \equiv C)$ 1828(m) cm⁻¹. ¹H NMR (400 MHz, C_6D_6): δ 0.08 (s, 9H, Si(CH₃)₃), 0.89 (t, 3H, ${}^{3}J(H,H) = 7.0 \text{ Hz}, CH_{3}, 3.68 \text{ (q, 2H, } {}^{3}J(H,H) = 7.0 \text{ Hz},$ CH₂), 7.01-7.11/7.91-7.98 (m/m, 18H/12H, m-H, p-H/o-*H* of PPh₃). ¹³C NMR (125.7 MHz, C_6D_6): δ -0.9 (s, Si(CH₃)₃), 14.2 (s, CH₂CH₃), 59.8 (s, CH₂), 94.9/97.7 (t/t, $^{2}J(P,C) = 2.1/2.1 \text{ Hz}, C \equiv C), 127.9 ('t', m-C of PPh_{3}),$ 129.8 (s, p-C of PPh₃), 131.9 ('t', i-C of PPh₃), 136.0 ('t', o-C of PPh₃), 150.7 (s, C=O). ³¹P NMR (C₆D₆, 81 MHz): δ 19.8 (s). For comparison Me₃SiC=CCO₂Et: $v(C \equiv C)$ 2180 cm⁻¹. ¹³C NMR (125.7 MHz, C₆D₆): δ -1.1 (s, Si(CH₃)₃), 13.8 (s, CH₃), 61.6 (s, CH₂), 92.8/96.2 (s/s, *C*≡*C*), 153.0 (s, *C*≡O).

3.2.6. trans-[$IrCl\{\eta^2-Me_3SiC\equiv CC(O)Me\}(PPh_3)_2$] (11)

To a yellow suspension of $[IrCl(N_2)(PPh_3)_2]$ (1) (62 mg, 0.079 mmol) in benzene (2 ml) 4-(trimethylsilyl)but-3-yn-2one (35 mg, 0.25 mmol) was added at room temperature with stirring. After 6 h an orange-brown solution formed. The work-up procedure is analogous to that described in Section 3.2.2. Brownish powder. Yield: 55 mg (78%). Anal. Calc. for IrClP₂SiOC₄₃H₄₂ (892.51): C, 57.87; H, 4.74. Found: C, 58.28; H, 5.24%. $v(C \equiv C)$ 1801(m) cm⁻¹. ¹H NMR (400 MHz, C₆D₆): δ 0.08 (s, 9H, Si(CH₃)₃), 1.62 (s, 3H, CH₃), 6.97–7.09/7.94–7.98 (m/m, 18H/12H, *m-H*, *p*- *H/o-H* of PPh₃). ¹³C NMR (125.7 MHz, C₆D₆): δ -0.4 (s, Si(*C*H₃)₃), 30.1 (s, *C*H₃), 103.1/105.8 (t/s(br), ²*J*(P,C) = 1.4 Hz/not observed, *C*=*C*), 127.9 ('t', *m*-*C* of PPh₃), 129.8 (s, *p*-*C* of PPh₃), 131.8 ('t', *i*-*C* of PPh₃), 136.1 ('t', *o*-*C* of PPh₃), 180.8 (*C*=O). ³¹P NMR (C₆D₆, 81 MHz): δ 22.4 (s). For comparison Me₃SiC=CC(O)Me: ν (C=C) 2151 cm⁻¹. ¹³C NMR (125.7 MHz, C₆D₆): δ -1.0 (s, Si(CH₃)₃), 32.0 (s, CH₃), 95.4/103.4 (s/s, *C*=*C*), 182.8 (s, *C*=O).

3.2.7. Isomerization of 9 to trans-[$IrCl = C = C(SiMe_3)$ - $CO_2Et (PPh_3)_2$] (10)

In an NMR tube 9 (20 mg) was dissolved in C_6D_6 (1 ml). The solution was then warmed up to about 50 °C and kept for a few days at that temperature. After three days the ratio 9:10 was found to be 53:47%. The analogous reaction was performed with UV irradiation (150 W Heraeus TQ 150 Z1). After 14 h 9 was almost quantitatively rearranged to 10 (>95%).

¹H NMR (400 MHz, C₆D₆): δ –0.10 (s, 9H, Si(CH₃)₃), 0.96 (t, 3H, ³J(H,H) = 7.0 Hz, CH₃), 3.88 (q, 2H, ³J(H,H) = 7.0 Hz, CH₂), 7.03–7.10/7.95–8.00 (m/m, 18H/ 12H, *p*-H, *m*-H/*o*-H of PPh₃). ¹³C NMR (125.7 MHz, C₆D₆): δ –0.4 (s, Si(CH₃)₃), 14.8 (s, CH₃), 59.3 (s, CH₂), 97.2 (t, ³J(P,C) = 2.7 Hz, Ir=C=C), 128.3 ('t', *m*-C of PPh₃), 130.3 (s, *p*-C of PPh₃), 132.2 ('t', *i*-C of PPh₃), 135.8 ('t', *o*-C of PPh₃), 151.0 (C=O), 263.7 (t, ²J(P,C) = 11.8 Hz, Ir=C). ³¹P NMR (81 MHz, C₆D₆): δ 27.1 (s).

3.2.8. Isomerization of 11 to trans- $[IrCl{=}C=C(SiMe_3)-C(O)Me{(PPh_3)_2}$ (12)

In an NMR tube $[IrCl(N_2)(PPh_3)_2]$ (1) (41 mg, 0.053 mmol) and 4-(trimethylsilyl)but-3-yn-2-one (15 mg, 0.11 mmol) were reacted in C₆D₆ (1 ml) for 2 days at room temperature. After a few hours a yellow suspension turned to a brown solution. The ³¹P NMR spectrum after 1 day revealed a mixture of **11**, **12** and decomposition products (d) in an approximate ratio **11:12:d** = 80:10:10%. Performing the reaction at 50 °C resulted in further decomposition of **11** within three days (**11:12:d** = 50:10:40%). ¹³C NMR (125.7 MHz, C₆D₆): δ 30.5 (s, CH₃), 108.1 (t, ³*J*(P,C) = 2.1 Hz, Ir=C=C), 181.9 (s, C=O), 267.9 (t, ²*J*(P,C) = 11.6 Hz, Ir=C), other resonances are overlapped with those of **11** and decomposition products. ³¹P NMR (81 MHz, C₆D₆): δ 26.0 (s).

3.2.9. trans-[$Ir\{C_4(CO_2Me)_4\}Cl(PPh_3)_2$] (13)

To a suspension of $[IrCl(N_2)(PPh_3)_2]$ (1) (110 mg, 0.141 mmol) in acetone (2–3 ml) dimethyl but-2-ynedioate (41 mg, 0.29 mmol) was added at 10 °C with stirring. After 10–15 min an orange-red clear solution formed. The solvent was evaporated in vacuo to ca. 1 ml. Methanol (ca. 5 ml) and chloroform (ca. 5 ml) was then added. The solution was stored for a few days at –40 °C. Within that time red crystals formed that were filtered off, washed with pentane (10 ml) and dried in vacuo for 1 h. Yield: 62 mg (42%). Anal. Calc.

for IrClP₂O₈C₄₈H₄₂ (1036.47): C, 55.62; H, 4.08. Found: C, 56.03; H, 3.43%. v(C=C) 1547(w), 1504(w) cm⁻¹. ¹H NMR (400 MHz, CD₂Cl₂): δ 3.14/3.35 (s/s, 6H/6H, 2×CH₃/2×CH₃), 7.34–7.38/7.41–7.45/7.56 (m/m/br, 12H/6H/12H, *m*-*H*/*p*-*H*/*o*-*H* of PPh₃). ¹³C NMR (100.6 MHz, CD₂Cl₂): δ 51.1/51.2 (s/s, 2×CH₃/2×CH₃), 128.2 ('t', *m*-*C* of PPh₃), 130.8 (s, *p*-*C* of PPh₃), 135.3 ('t', *o*-*C* of PPh₃), 141.6/151.5 ('t'/s, *i*-*C* of PPh₃ and C=C, two of three signals were observed), 165.0/168.6 (s/s, 2×C=O). ³¹P NMR (81 MHz, CD₂Cl₂): δ 21.4 (s).

Acknowledgements

The authors gratefully acknowledge the Deutsche Forschungsgemeinschaft for financial support and the Merck company for gifts of chemicals.

References

- C. Elschenbroich, Organometallchemie, fourth ed., Teubner, Stuttgart, 2003, p. 319.
- [2] C. Bruneau, P.H. Dixneuf, Acc. Chem. Res. 32 (1999) 311.

- [3] F.J.G. Alonso, A. Höhn, J. Wolf, H. Otto, H. Werner, Angew. Chem. 97 (1985) 401.
- [4] H. Werner, A. Höhn, J. Organomet. Chem. 272 (1984) 105.
- [5] A. Höhn, H. Werner, J. Organomet. Chem. 382 (1990) 255.
- [6] A. Höhn, H. Otto, M. Dziallas, H. Werner, J. Chem. Soc., Chem. Commun. (1987) 852.
- [7] H. Werner, R.W. Lass, O. Gevert, J. Wolf, Organometallics 16 (1997) 4077.
- [8] H. Werner, K. Ilg, B. Weberndörfer, Organometallics 19 (2000) 3145.
- [9] H. Werner, T. Dirnberger, A. Höhn, Chem. Ber. 124 (1991) 1957.
- [10] (a) P. Steinert, H. Werner, Organometallics 13 (1994) 2677;
 (b) H. Werner, M. Schulz, B. Windmüller, Organometallics 14 (1995) 3659.
- [11] J.P. Collman, J.W. Kang, J. Am. Chem. Soc. 89 (1967) 844.
- [12] J.P. Collman, J.W. Kang, W.F. Little, M.F. Sullivan, Inorg. Chem. 7 (1968) 1298.
- [13] E. Pretsch, P. Bühlmann, C. Affolter, Structure Determination of Organic Compounds, Springer, Berlin, 2000, p. 249.
- [14] M. Konkol, C. Wagner, C. Bruhn, D. Steinborn, Z. Kristallogr. NCS 218 (2003) 115.
- [15] (a) J.P. Collman, N.W. Hoffman, J.W. Hosking, Inorg. Syn. 12 (1970) 8;
- (b) J.P. Collman, J.W. Kang, J. Am. Chem. Soc. 88 (1966) 3459.
- [16] R. West, G.A. Gornowicz, J. Am. Chem. Soc. 93 (1971) 1720.